Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(suppl 2): e20230079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055444

RESUMO

We aimed to evaluate how high-fat diet consumption can interfere with rat reproductive performance and fetal development. High-fat diet (HFD) was initiated in 30-day-old rats, distributed into two groups (n=7 animals/group): Rats receiving a standard diet and rats receiving HFD. At adulthood, the rats were mated, and on day 21 of pregnancy, the females were anesthetized, decapitated, and submitted to laparotomy to obtain visceral and periovarian adipose tissue. The uterine horns were exposed for analysis of maternal reproductive performance. The fetuses and placentas were weighed and analyzed. Pearson's correlation test was used, and p<0.05 was considered significant. There was a significant positive correlation (HFD consumption x increased periovarian fat) and a negative correlation with the implantation, live fetus numbers and lower litter weight. Furthermore, the increased relative weight of periuterine fat was related to the lower number of live fetuses and litter weight. Regarding the fetal weight classification, there was a negative correlation between the relative weight of periovarian fat and the percentage of fetuses appropriate for gestational age and large for gestational age. Therefore, our findings show that HFD maternal intake negatively influenced on reproductive performance and fetal growth.


Assuntos
Desenvolvimento Fetal , Reprodução , Gravidez , Feminino , Ratos , Animais , Placenta , Feto , Tecido Adiposo
2.
Reprod Sci ; 30(4): 1241-1256, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35999443

RESUMO

Studies on vitamin D supplementation have been performed in experimental and clinical investigations considering gestational diabetes and/or vitamin D deficiency in pregnancy. However, the results are controversial and few present the effects and mechanisms of this micronutrient on pregestational diabetes. The objective of this study was to evaluate the effect of vitamin D on the pregnancy of rats with pre-existing diabetes and their fetuses. Pregestational diabetes was induced in Sprague-Dawley rats at birth. The adult diabetic and nondiabetic rats were orally administered with vitamin D (cholecalciferol) throughout the pregnancy. The diabetes status was monitored during pregnancy by an oral glucose tolerance test (OGTT). At the end of the pregnancy, pancreas and blood samples were collected for morphological analyses and lipid peroxidation measurements, respectively. The influence of vitamin D treatment on reproductive outcomes, fetal growth, and development were compared to those of untreated diabetic and nondiabetic pregnant rats. P < 0.05 was considered a significant statistical limit. The diabetic rats given vitamin D had a greater number of insulin-positive cells, contributing to reduced blood glucose levels and thiobarbituric acid reactive substance concentrations (TBARS-an indicator of membrane lipid peroxidation), and increased reduced thiol group levels, contributing to suitable intrauterine conditions for better fetal development, which was confirmed by higher fetal viability rates. Thus, this study shows the effects and mechanisms of vitamin D supplementation on pre-existing diabetes in pregnant rats, confirming its beneficial effects on maternal redox status and glycemic control, and the decline of adverse maternal-fetal repercussions.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Gravidez , Feminino , Humanos , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos Sprague-Dawley , Diabetes Gestacional/tratamento farmacológico , Vitamina D/uso terapêutico , Suplementos Nutricionais , Resultado da Gravidez
3.
An Acad Bras Cienc ; 94(suppl 4): e20220717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36515329

RESUMO

Pregestational hyperglycemia cause adverse effects on mothers and their offspring. We aimed to evaluate the maternal hyperglycemia influence on pre-embryos from diabetic rats and on their generations (daughters and granddaughters). Diabetes was induced in Sprague-Dawley rats. The mothers and their female pups were submitted to oral glucose tolerance test in adulthood. In day 4 of pregnancy, pre-embryos were collected for morphological analysis. The diabetic mother, daughter and granddaughter rats showed glucose intolerance and their pre-embryos presented developmental delay, degeneration and losses compared to the nondiabetic group. Thus, maternal diabetes transgenerationally affects embryos at early development, which contributes for embryofetal losses.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Intolerância à Glucose , Hiperglicemia , Gravidez , Humanos , Ratos , Animais , Feminino , Ratos Sprague-Dawley
4.
Life Sci ; 310: 121108, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273628

RESUMO

AIMS: To evaluate the morphological changes in the pancreatic islet cells of adult female pups born to diabetic rats and fed a high-fat diet. MAIN METHODS: Female Sprague-Dawley rats were distributed into four experimental groups (n = 10 animals/group): 1) female pups from non-diabetic dams and fed a standard diet (OC/SD), 2) female pups from non-diabetic dams and fed a high-fat (OC/HFD), 3) female pups from diabetic dams and fed a standard diet (OD/SD) and 4) female pups from diabetic dams and fed a high-fat diet (OD/HFD). In adulthood, the rats were submitted to the oral glucose tolerance test and later euthanized to collect the pancreas for the analysis of pancreatic islets. KEY FINDINGS: The OC/HFD and OD/SD groups showed an increased percentage of cells immunostained for insulin and a decreased percentage and intensity of staining for somatostatin. The OD/HFD group showed an increased percentage of cells immunostained for insulin and glucagon and a higher staining intensity for glucagon. There was a progressive increase in blood glucose in the OC/HFD, OD/SD, and OD/HFD groups. SIGNIFICANCE: The association between maternal diabetes and/or the administration of high-fat diet-induced changes in the pancreatic hormonal triad of female pups in adulthood. In turn, these changes in the pancreatic islets are not capable of causing decreased blood glucose in the offspring, contributing to the development of glucose intolerance in adulthood.


Assuntos
Diabetes Mellitus Experimental , Ilhotas Pancreáticas , Ratos , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Glicemia , Glucagon , Ratos Sprague-Dawley , Insulina
5.
J Dev Orig Health Dis ; 13(5): 634-641, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34859760

RESUMO

Clinical and epidemiological studies show that maternal hyperglycemia can change the programming of offspring leading to transgenerational effects. These changes may be related to environmental factors, such as high-fat diet (HFD) consumption, and contribute to the comorbidity onset at the adulthood of the offspring. The objective of this study was to evaluate the hyperglycemic intrauterine environment, associated or not with an HFD administered from weaning to adult life on the periovarian adipose tissue of rat offspring Maternal diabetes was chemically induced by Streptozotocin. Female offsprings were randomly distributed into four experimental groups (n = 5 animals/group): Female offspring from control or diabetic mothers and fed an HFD or standard diet. HFD was prepared with lard enrichment and given from weaning to adulthood. On day 120 of life, the rats were anesthetized and sacrificed to obtain adipose tissue samples. Then, the hyperglycemic intrauterine environment and HFD fed after weaning caused a higher body weight, total fat, and periovarian fat in adult offspring, which could compromise the future reproductive function of these females. These rats showed higher adiposity index and adipocyte area, contributing to hypertrophied adipose tissue. Therefore, maternal diabetes itself causes intergenerational changes and, in association with the HFD consumption after weaning, exacerbated the changes in the adipose tissue of adult female offspring.


Assuntos
Diabetes Gestacional , Hiperglicemia , Efeitos Tardios da Exposição Pré-Natal , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Hiperglicemia/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Desmame
7.
Reprod Sci ; 28(8): 2223-2235, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33515208

RESUMO

The present study aims to confirm if the moderate-intensity swimming has successful glycemic control and non-toxic oxidative stress levels and to verify the influence on pancreatic adaptations, embryo implantation, and placental efficiency. Female Wistar rats were randomly distributed to obtain mildly diabetic by streptozotocin induction at birth and the non-diabetic females given vehicle. At adulthood, pregnant rats were put at random into sedentary non-diabetic rats (ND); exercise non-diabetic rats (NDEx); sedentary diabetic rats (D); and exercise diabetic rats (DEx). The rats of the groups submitted to moderate intensity carried loads equivalent to 4% of body weight. On day 17 of gestational day, all rats were submitted to oral glucose tolerance test (OGTT). Next day (GD18), the rats were anesthetized and killed to count implantation sites and to collect placentas, blood, and muscle samples for biochemical biomarkers and pancreas for immunohistochemical analysis. The moderate exercise used was not sufficient to stimulate the aerobic pathway but presented positive results on glucose metabolism, lower embryo postimplantation loss, and pancreatic morphology compared with the sedentary diabetic group. However, the DEx group showed muscular damage, decreased antioxidant defense, and lipid peroxidation. Thus, the moderate-intensity exercise reduces glycemic levels during OGTT and causes no damage to non-diabetic rats related to other analyzed parameters in this study. The exercised diabetic rats present better glycemic metabolism in OGTT, islet pancreatic morphology, and embryofetal development. However, it is necessary an adjustment in this exercise intensity to improve the effectiveness of aerobic training for reduction of maternal muscular and lipid membrane damages.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Citrato (si)-Sintase/metabolismo , Creatina Quinase/sangue , Diabetes Mellitus Experimental/metabolismo , Feminino , Insulina/sangue , Músculo Esquelético/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar
8.
An Acad Bras Cienc ; 92(4): e20191572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33331442

RESUMO

This study aimed at evaluating the levels of different maternal exercise intensities on maternal and fetal outcomes. Wistar rats were mated and the pregnant rats were distributed into four experimental groups (n = 13 animals/group): Control (Not exercise group - 0% of the anaerobic threshold- AT), mild (20%), moderate (80%), and heavy-exercise intensity (140% of AT). These AT were matched to the load of 0, 1, 4 and 7% of the body weight of the animal related to swimming-induced physical intensity. In pregnancy, biomarkers related to maternal blood gases, oxidative stress, metabolism, and reproductive performance, and outcomes of their offspring were analyzed. The mild and moderate-swimming caused no change on implantation, live fetus numbers and oxidative stress status. However, the rats submitted to mild-exercise presented respiratory alkalosis and the heavy-exercise group showed respiratory acidosis. In addition, fetuses of the heavy-exercise dams were smaller for gestational age and lower serum adiponectin levels compared to those of other groups. In conclusion, the moderate-exercise intensity caused beneficial effects for maternal environment and the mild and moderate-exercise presented similar fetal repercussions. Nevertheless, the heavy-exercise intensity caused maternal metabolic alterations that damaged the fetal growth. Therefore, these findings confirm that physical intensity should be carefully conducted to avoid maternal complications and, consequently, compromised fetal repercussions.


Assuntos
Glicemia , Reprodução , Animais , Feminino , Feto , Gravidez , Ratos , Ratos Wistar , Natação
9.
An Acad Bras Cienc ; 89(4): 2749-2756, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236871

RESUMO

Several studies present different methodologies and results about intensity exercise, and many of them are performed in male rats. However, the impact of different type, intensity, frequency and duration of exercise on female rats needs more investigation. From the analysis of blood lactate concentration during lactate minimum test (LacMin) in the swimming exercise, the anaerobic threshold (AT) was identified, which parameter is defined as the transition point between aerobic and anaerobic metabolism. LacMin test is considered a good indicator of aerobic conditioning and has been used in prescription of training in different exercise modalities. However, there is no evidence of LacMin test in female rats. The objective was to determine AT in non-pregnant and pregnant Wistar rats. The LacMin test was performed and AT defined for mild exercise intensity was from a load equivalent to 1% of body weight (bw), moderate exercise as carrying 4% bw and severe intensity as carrying 7% bw. In pregnant rats, the AT was reached at a lower loading from 5.0% to 5.5% bw, while in non-pregnant the load was from 5.5% to 6.0% bw. Thus, this study was effective to identify exercise intensities in pregnant and non-pregnant rats using anaerobic threshold by LacMin test.


Assuntos
Limiar Anaeróbio/fisiologia , Ácido Láctico/metabolismo , Condicionamento Físico Animal , Animais , Teste de Esforço/métodos , Feminino , Ácido Láctico/sangue , Masculino , Resistência Física , Gravidez , Ratos , Ratos Wistar , Natação
10.
An. acad. bras. ciênc ; 89(4): 2749-2756, Oct.-Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886863

RESUMO

ABSTRACT Several studies present different methodologies and results about intensity exercise, and many of them are performed in male rats. However, the impact of different type, intensity, frequency and duration of exercise on female rats needs more investigation. From the analysis of blood lactate concentration during lactate minimum test (LacMin) in the swimming exercise, the anaerobic threshold (AT) was identified, which parameter is defined as the transition point between aerobic and anaerobic metabolism. LacMin test is considered a good indicator of aerobic conditioning and has been used in prescription of training in different exercise modalities. However, there is no evidence of LacMin test in female rats. The objective was to determine AT in non-pregnant and pregnant Wistar rats. The LacMin test was performed and AT defined for mild exercise intensity was from a load equivalent to 1% of body weight (bw), moderate exercise as carrying 4% bw and severe intensity as carrying 7% bw. In pregnant rats, the AT was reached at a lower loading from 5.0% to 5.5% bw, while in non-pregnant the load was from 5.5% to 6.0% bw. Thus, this study was effective to identify exercise intensities in pregnant and non-pregnant rats using anaerobic threshold by LacMin test.


Assuntos
Animais , Masculino , Feminino , Gravidez , Ratos , Condicionamento Físico Animal , Limiar Anaeróbio/fisiologia , Ácido Láctico/metabolismo , Resistência Física , Natação , Ratos Wistar , Ácido Láctico/sangue , Teste de Esforço/métodos
11.
Diabetol Metab Syndr ; 3(1): 19, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21831283

RESUMO

OBJECTIVE: To investigate and compare the incidence of histopathological placental lesions in mild gestational hyperglycemia, gestational diabetes and overt diabetes at term and preterm gestation. RESEARCH DESIGN AND METHODS: One-hundred-and-thirty-one placental samples were collected from Diabetes mellitus (DM) positive screened patients. Two diagnostic tests, glycemic profile and 100 g oral glucose tolerance test (OGTT) in parallel identified 4 groups normoglycemic, mild gestational hyperglycemia (MGH), gestational DM (GDM) or overt DM (DM). Placental tissue specimens and sections from 4 groups were obtained by uniform random sampling and stained with hematoxylin-eosin. RESULTS: Placentas from MGH group presented 17 types of histopathological change and higher rates of syncytial nodes and endarteritis. GDM placentas presented only nine types of histopathological change, high rates of dysmaturity, low rates of calcification and no syncytial nodes. Overt DM placentas showed 22 types of histopathological change, 21 of which were present in the preterm period. There were histopathological similarities between MGH and DM placentas, but the former exhibited a higher incidence of endarteritis, which has been described as a "post-mortem" phenomenon. CONCLUSION: Our results confirmed that the distinct placental changes associated with DM and MGH depend on gestational period during which the diabetic insult occurs. It may reasonably be inferred that subclinical maternal hyperglycemia during pregnancy, as showed in MGH group, is responsible for increased placental endarteritis, a postmortem lesion in the live fetus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...